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Abstract – In this paper, a guaranteed method for the estimation of dielectric relaxation model parameters is 
presented. The only assumption used is that data uncertainty is bounded with known prior bounds. The main 
difference with classical methods based on least squares minimisation is that the solution is not a point but leads to 
a set. When least squares methods are used, the model structure should be known. In some cases, this information is 
not available (for instance because there is not enough data); in this case the identification process can lead to 
unacceptable results. In this paper, a new technique, based on interval analysis, allowing the rejection of models that 
are not consistent with data is presented. When a solution exists, the guaranteed method provides a natural 
description of the uncertainty associated with the identified dielectric parameters. 

 
1. INTRODUCTION 
Measurement methods such as broadband dielectric spectroscopy, are nowadays useful for the study of organic or 
inorganic insulating materials, owing to the large frequency domain that can be explored. In the case of polymeric 
materials, in the frequency range [10-3 Hz; 107 Hz], dielectric relaxation spectra can be split into a sum of 
independent contributions, the so-called relaxation modes, corresponding to dipole motions of the macromolecular 
chains [1]. Dielectric relaxation spectra can be approximated using semi-empirical models derived from the Debye 
equation, such as Cole-Cole, Cole-Davidson or Havriliak-Negami laws [2]. In this work, we consider only the 
Havriliak-Negami model, given by the following expression [3]: 

 ( )
( )( ) ( )

0

1 01
i

i

n
i

s
i

i
jj

βα

εε ω ε
ε ωωτ

∞
=

∆
= + +

+
�

σ
 (1) 

where ε(ω) is the relative dielectric complex permittivity measured at a constant temperature and pulsation ω, ε∞ is 
the high frequency permittivity, τi and ∆εi are respectively the relaxation time and the dielectric strength associated 
with relaxation mode i, αi and βi are shape parameters describing respectively the symmetric and the asymmetric 
broadening of the distribution function of relaxation times and n is the number of relaxation modes in the dielectric 
spectrum. In equation (1), the last term allows to take into account the DC ohmic contribution in the low frequencies 
domain, where σ0 is the DC conductivity, s is an adjustable parameter (with 0<s≤1) and ε0 is the vacuum dielectric 
permittivity. 

Dielectric permittivity can be decomposed into a real part  and an imaginary part  as follows 'ε ''ε
  (2) ( ) ( ) ( )ε ω ε ω ε ω′ ′′= − j
where the real part is given by 
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and the imaginary part by  
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The number of relaxation processes n is usually not greater than 3. The dielectric parameters usually satisfy the 

following constraints  

 , for i = 1 to n (6) ] ] ] ] ] ]01, 0, 0, 0,1 , 0,1 , 0, 0,1ε ε τ α β σ∞ > ∆ > > ∈ ∈ ≥ ∈i i i i s

However, parameters σ0 and s will not be taken into account in the following which is equivalent to assume  
σ0 =0. 

In many cases (narrow frequency domain, relaxation modes overlapping, noisy data or predominant DC ohmic 
contribution), the precise estimation of these parameters using classical least-squares minimisation methods 
becomes a hard exercise. The aim of this paper is to give a guaranteed method for estimating the parameters p = (ε∞, 
τi, αi, βi, ∆εi)T in the sense that no solution can be lost. This property is an important advantage compared to local 
iterative techniques such as the quasi-Newton or the conjugate gradient methods, as the solution they return 
depends on the initial value given to the parameters. In this paper, we show how to derive guaranteed results, where 
the solutions are given by some sets guaranteed to contain the actual solutions. These sets are then used to 
characterise the identified parameters uncertainty. The main tools to be used to solve the parameter estimation 
problem are interval analysis [4] and set inversion [5]. 
 
2. BOUNDED ERROR CONTEXT 
We denote by ε m the theoretical relative dielectric complex permittivity obtained by using the model (1), and by  
the experimental measured permittivity. Let e be the measurement error (e =  - ε

ε̂
ε̂ m), then a set [ε ] containing the 

acceptable ε  is built as: 
 [ ] ˆ ˆ,ε ε ε= − +� �� �e e  (7) 

Estimating the parameter vector p in a bounded error context consists in determining the set �  of all the 
parameters p contained in the prior search set  such that theoretical ε� m(ωj) (for all the ωj) are consistent with the 
experimental data and with the uncertainty. It means that the error between the theoretical and the experimental data 
remains acceptable for all ω j . The solution set  is thus given by: �

 ( ) [ ]{ }| mε= ∈ ∈p p� � ε  (8) 

The characterization of the solution set  is a set inversion problem; a guaranteed approximation of such a set 
can be provided by using interval analysis. 

�

 
2.1 Interval Analysis 
An interval, denoted by [x], is a connected and closed subset of . The set of all real intervals is denoted by . 
Real operations such as addition, subtraction, multiplication and division are extended to intervals according to the 
following formula: 

� ��

  (9) [ ]  [ ] = {    |   [ ] et  [ ]}∈ ∈� �x y x y x x y y

where . Given an interval [ ]{ , , , /}∈ + − ×� [ ,=x x x ] , the following entities are defined: width: [ ]( ) = −w x x x  ; 

midpoint: [ ]( ) ( ) / 2= +m x x x . 

We denote by a box [x] a vector with interval elements; its width and midpoint are defined componentwise. As 
arithmetic operations, real functions are extended to intervals. Let f be a function from � to �, the interval function 
[f] from �� to �� is called an inclusion function of f if and only if: 
  (10) [ ][ ] , ([ ])  ([ ])∀ ∈ ⊆��x f x f x

The inclusion function is not unique, and the optimal one is the interval function giving the smallest evaluation. 
In most cases, the optimal inclusion function is not available and the natural inclusion one is used instead; the latter 
is obtained by replacing all real arguments by their interval counterparts and elementary real functions (such as sin, 
cos, log,…) by their extensions to intervals (see [4] for more details).  

 
SIVIA 
SIVIA (Set Inversion Via Interval Analysis, [5]), based on interval analysis, allows the characterization of the 
solution set �  by computing two sets �  and �  such as: 
 ⊆ ⊆� � �  (11) 

The set �  contains all the boxes proved to be feasible and �  contains �  and the undetermined boxes.  

Let  be the actual model output and N the number of measurements, then, a box  is called: mε [ ]p
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1, ,- feasible, if ( ) ( ), ,ε ω ε ω� � � �⊆ =
� � � �

�m j j j Np  

- unfeasible, if  ( ) ( )| ,ε ω ε ω� � � �∃ ∩
� � � �m j jj p = ∅

- undetermined, otherwise. 
 

Algorithm SIVIA(in : [ ]  ; inout : [ ], ,ε ηp ,� � ) 

1     if ,  reject [ ; ( ) [ ]ε ε� �∩ = ∅� �m p ]p

2 if ,   ( ) [ ]ε ε� � ⊆� �m p [ ]:= ∪� � p ; [ ]:= ∪� � p ; 

3 if [ ]( ) η<w p     [ ]:= ∪� � p ; 

4 bisect [  on [  and [ ] ; ]p ]1p 2p

5 SIVIA(in : [ ]  ; inout : [ ]1 , ,ε ηp ,� � );  SIVIA(in : [ ]  ; inout : [ ]2 , ,ε ηp ,� � ); 

 
The parameter η in SIVIA is used to stop the bisection if a box is too small. SIVIA is a branch-and-bound 

algorithm, its complexity is exponential with the number of parameters to be estimated, which means that it is 
efficient only when the dimension of p is low. To reduce the number of bisections in SIVIA, constraint propagation 
techniques [6,7,8] are used. These techniques make it possible to reduce the search box without making bisections. 
 
2.2 Constraints satisfaction problem 
Definition 1 – CSP: Consider n variables xi ∈ �, i ∈ {1,2,…,n}, linked by nf relations of the form : 
 1 2( , , , ) 0,   for  1 to j n ff x x x j n= =�  (12) 

and where each variable xi is known to belong to a prior interval domain [xi]0 ; define the vector  
and the function , then eqn.(12) can be written as a constraint satisfaction problem 
(CSP) [7] : 

T
1 2 = ( , , , )� nx x xx

T
1 2 = ( , , , )�

fnf f ff x x x x( ) ( ) ( ) ( )

  H :  (13) = ,      ∈f x 0 x x 0( ) [ ]
Definition 2 – Contractors: Interval CSPs can be solved with contractors. An operator CH  is a contractor for the 
CSP H defined by (13) if, for any box [x] in [x]0, it satisfies: 

  (14) 
[ ]( ) [ ]

[ ]( ) [ ]
(contractance)

(correctness)

⊂

∩ = ∩

H

H

C

C

x x

x x� �

where  is the intersection of two boxes and � a solution set for H.  ∩
Definition 3 – Solver: A solver for the CSP defined by (13) is an algorithm  such that: Ψ
  (15) ( ) ( )= ⇔ = Ψf x 0 x x
According to the fixed-point theorem and using (15), if the series  converges towards , then   
shall contain the solution of H. 

1 ( )+ = Ψkx kx ∞x ∞x

Several punctual solvers such as the Newton method, the Gauss-Siedel or the Krawczyk operators have been 
extended to intervals, and are used to solve efficiently even non-linear CSPs [7, 9]. However, they remain limited to 
problems where the number of constraints is equal to the number of variables.  

When the number of constraints and the number of variables are different, one can use an alternate contractor 
relying on interval propagation techniques. These techniques combine the constraint propagation techniques 
classically used in the domain of artificial intelligence [6] and interval analysis. They have been brought to 
automatic control in [8], for solving set inversion problems in a bounded-error context. The algorithm used for 
constraint propagation is based on the interval extension of the local Walz filtering [6, 8]. In fact, the relationships 
(12) between the variables can be viewed as a network where the nodes are connected with the constraints. In order 
to spread the consequences of each node throughout the network, the main idea is to deal with a local group of 
constraints and nodes and then record the changes in the network. Further deductions will make use of these 
changes to make further changes. The inconsistent values for the state vector are thus removed. If the network 
exhibits no cycles, then optimal filtering can be achieved by performing only one forward and one backward 
propagation: this is known as the forward-backward contractor [7]. 

 

R01
3



 
 

1

2.3 Example: The forward-backward contractor 
Consider the CSP  
  H :  (16) f  = ,      ∈x 0 x x 0( ) [ ]
where ( ) 3 2= ⋅f x x xx -  and the prior domain [x]0 = [2, 10] × [1, 10] × [1, 5]. The constraint f can be rewritten as: 
  (17) 3 2= ⋅x x x 1

The forward interval constraint propagation will remove all inconsistent values from x3, as follows 
  (18) 3 1 1 0 2 0 3 0[ ]  = ([ ] [ ] )  [ ]  = [2 , 5]⋅ ∩x x x x

Then, the backward interval constraint propagation will remove all inconsistent values from x1  and x2 as follows  
  (19) 1 1 3 1 2 0 1 0[ ]  = ([ ]  / [ ] )  [ ]  = [2 , 5]∩x x x x
 5

22 1 3 1 1 1 2 0[ ]  = ([ ]  / [ ] )  [ ]  = [1 , ]∩x x x x  (20) 
If the operations (18)-(20) are performed again, the intervals would not be modified. The box 

5
21[ ] =[2, 5]×[1, ]×[2 , 5]x  contains the solution of the CSP. For more details about this contractor see [7]. 

 
3. A CASE STUDY WITH A SINGLE RELAXATION 
In this section, we study the case of single relaxation spectra. The pseudo-actual data are obtained by simulating the 
Havriliak-Negami model with a single relaxation process, i.e. equations (3) and (4) are used with n = 1. 
 
3.1 Relaxation parameters 

We used three relaxation spectra labelled “cases A, B and C”, see Figure 1. For these three cases, α, β, ∆ε and 
ε∞ parameters are identical and are given in Table 1. 
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Figure 1. Real and imaginary parts of the relative dielectric permittivity for simulation cases A, B and C. 

 
Table 1. α, β, ∆ε and ε∞ parameters values used for single relaxation spectra. 

α  β ∆ε ε∞
0.8 0.5 6 3 

 
3.2 Influence of frequency windowing 
In order to take into account the effect of frequency windowing on the estimation, we used three different values of 
the relaxation time τ. The values corresponding to “cases A, B and C” are reported in Table 2. The corresponding 
dielectric spectra are presented in Figure 1. The width of each interval quantifies the uncertainty on the 
corresponding identified parameter. 
 

Table 2. Relaxation time values corresponding to cases A, B and C. 
Case A B C 
τ (s) 1.59 1.59 × 10-3 1.59 × 10-6
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Table 3. Estimated parameters and computing time values corresponding to cases A, B and C. 
Case A B C 

α [0.7767 ; 0.8195] [0.7958 ; 0.8045] [0.7981 ; 0.8021] 
β [0.4829 ; 0.5220] [0.4919 ; 0.5078] [0.4861 ; 0.5146] 
∆ε [5.918 ; 6.0862] [5.9352 ; 6.0667] [5.9413 ; 6.0656] 

τ (s) [1.4725 ; 1.7028] [1.52 ; 1.67] 10-3 [1.51 ; 1.67] 10-6

ε∞ [2.9844 ; 3.0156] [2.9806 ; 3.0188] [2.9393 ; 3.0358] 
C.T. (s) 428 53 50 

 
 The parameters estimated for the simulation cases A, B and C are given in Table 3 along with the computing 

time (C.T.) obtained using a PC with a Celeron™ 733 MHz processor. For these simulations, the amplitude of the 
noise was fixed to 0.5% for both real and imaginary parts of the dielectric permittivity. The parameter values 
obtained are not single values but real intervals, the width of which quantifies the uncertainty in the identified 
parameter. 

As expected, the smallest intervals, i.e. the smallest uncertainties, are obtained for case B, i.e. when the 
pseudo-experimental data include the whole relaxation process. On the contrary, the largest intervals are obtained 
when the low frequency part of the relaxation process is truncated, excepted for ε∞ which is the worst estimated 
parameter when the high frequency part of the relaxation process is truncated. Nevertheless, in all cases, the true 
parameters values are included in the solution intervals, with a rather acceptable computing time. 

 
3.3 Influence of signal to noise ratio 
In order to take into account the influence of signal to noise ratio on the identified parameters uncertainty, we 
performed several estimations using the simulation case B for three different noise amplitudes: 1%, 2% and 5%. 
The results obtained are reported in Table 4. 

 
Table 4. Estimated parameters and computing time values corresponding to noise amplitude (N.A.) values 

 of 1%, 2% and 5%. 
 N.A. 1% 2% 5% 
α [0.793;0.807] [0.790;0.810] [0.781;0.820] 
β [0.487;0.513] [0.480;0.519] [0.461;0.538] 
∆ε [5.890;6.115] [5.816;6.189] [5.628;6.389] 
τ (ms) [1.490;1.694] [1.427;1.783] [1.277;2.010] 
ε∞ [2.963;3.035] [2.931;3.068] [2.832;3.164] 
C.T. 108 s 454 s 2h 22min 

 
We can notice that increasing the noise amplitude induces as expected a pessimistic estimation of the model 

parameters. This is particularly true for β, τ and ∆ε parameters, whereas α and ε∞ are less affected by a strong 
increase of the noise amplitude. 

Besides, a dramatic increase of the computing time is observed for a noise amplitude equal to 5%. This can be 
explained by the fact that larger prior error bounds on model output render the contractor less efficient and thus 
make necessary a greater number of bisections. 

 
4. CASE STUDY WITH TWO RELAXATION PROCESSES 
In this section, we study the case of two relaxation spectra. The pseudo-actual data are obtained by simulating a 
Havriliak-Negami model with two relaxation processes. 

 
4.1 Relaxation parameters and simulation cases 
In this part, we are interested in the estimation of Havriliak-Negami model parameters when two relaxation 
processes are observed in the pseudo-actual measurement frequency range. The higher and lower frequency 
relaxation modes will be named respectively “relaxation 1” (subscript 1) and “relaxation 2” (subscript 2). Four 
simulation cases have been considered. Eight of the nine parameters where kept constant for all simulations. These 
parameters are given in Table 5 (see also Figure 2). 
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Table 5. Constant parameters values used for two relaxation spectra simulations. 
α1 β1 ∆ε1 α2 β2 ∆ε2 τ2 (s) ε∞
0.6 1 1 0.8 0.7 6 0.15915 3 

 
The noise amplitude was fixed to 0.5%. The only parameter that was changed is the relaxation time τ1 associated 

with “relaxation 1”. In fact, we decided to change the ratio of the two relaxation times values τ2/τ1 in order to show 
the influence of the modes overlapping upon the parameters estimation. The corresponding values of τ1 are given in 
Table 6. The dielectric spectra investigated are plotted in Figure 2. 
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Figure 2. Real and imaginary parts of the relative dielectric permittivity for the two relaxation processes simulation 
cases. 

 
Table 6. τ2/τ1 and τ1 values used for two relaxation spectra simulations. 

τ2/τ1 104 103 102 10 
τ1 ( × 10-6 s) 15.915 159.15 1591.5 15915 

 
 

4.2 Model invalidation – selection of the number of relaxation processes 
When two relaxation processes overlap, it is difficult to determine the number of terms in eqn.(1), i.e. the number of 
relaxation processes to impose in the model. 

If a classical optimisation method, such as least-square minimisation, is used to estimate the model parameters, 
it is almost impossible to invalidate the model proposed. In Figure 3, we present in a Cole-Cole plot the dielectric 
relaxation spectrum corresponding to the considered simulation case (two relaxation processes), using τ2/τ1 = 10, 
along with the identified model with least squares, using the Havriliak-Negami model with a single relaxation 
process. The optimal parameters obtained by least-square minimisation are: ε∞ = 3.01; ∆ε = 6.9874; τ = 0.402 s; α 
= 0.76; β = 0.73. This result is visually quite acceptable.  
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Figure 3. Cole-Cole plot of the two relaxation processes simulation case with τ2/τ1 = 10. 
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On the contrary, the bounded error approach introduced in this paper proves that no solution is found with a 

single relaxation model, the latter is thus invalid. In next section, the bounded error identified is performed with a 
two relaxations model. 

 
4.3 A two relaxation model - Influence of modes overlapping on the parameters estimation 
In the following, we used a two relaxation model. The estimated parameters and the corresponding computing times 
are reported in Table 7 for the four dielectric relaxation spectra studied. We must note that the width of the 
estimated parameter intervals increases when the ratio τ2/τ1 is decreased, i.e. when the two relaxation processes are 
overlapped. This is particularly true for the fastest relaxation, because of its lower dielectric strength. Finally, we 
can notice that the ε∞ parameter is always rather well estimated in all cases. 

 
Table 7. Estimated parameters and computing time values corresponding to τ2/τ1 values of 104, 103 and 102. 

τ2/τ1 104 103 102

α1 [0.593 ; 0.633] [0.593 ; 0.654] [0.578 ; 0.687] 
β1 [0.9375 ; 1] [0.908 ; 1] [0.846 ; 1] 
∆ε1 [0.971 ; 1.015] [0.907 ; 1.061] [0.792 ; 1.304] 

τ1 (× 10-6 s) [15.04 ; 17.39] [138.5 ; 187.5] [1145 ; 2348] 
α2 [0.796 ; 0.803] [0.796 ; 0.803] [0.792 ; 0.810] 
β2 [0.683 ; 0.713] [0.672 ; 0.727] [0.674 ; 0.778] 
∆ε2 [5.984 ; 6.029] [5.939 ; 6.095] [5.696 ; 6.211] 

τ2 (s) [0.154 ; 0.166] [0.151 ; 0.168] [0.143 ; 0.168] 
ε∞ [2.999 ; 3.001] [2.999 ; 3.001] [2.999 ; 3.001] 

C.T. 4h 8min 4h 35min 10h 14min 
 
 
5. CONCLUSIONS 

In this paper, we endeavoured to show that a bounded error identification technique, based on the use of interval 
analysis could be an interesting alternative to classical estimation techniques for the analysis of dielectric relaxation 
spectra. Indeed, these methods allow one to obtain guaranteed estimation of the model parameters and of their 
associated uncertainties. Furthermore, in some cases it makes it possible to invalidate the model used.  

Finally, we hope that this method will allow one to obtain reliable values of Havriliak-Negami model 
parameters and thus to obtain accurate information on the distribution function of relaxation times, particularly 
when several dipole contributions are observed in the measurement frequency range. Nevertheless, some 
improvements must be made in order to reduce the computing time, thus rendering tractable the use of actual data. 
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